Table I. Kinetic Results of Propylene Polymerization

catalyst system		1/MAO		2/MAO			
T _m °C	25	0	-20	25	0	-20	
[Ć*], % of Ti	4.5	4.25	3.8	12.2	8.8	3.8	
$k_{\rm n}$, (M s) ⁻¹	210	240	360	150	270	1480	
$k_{\rm tr}^{\rm A} \times 10^2$, s ⁻¹	1.5	0.9	0.40	0.38	0.79	1.52	
$k_{\rm d}^* \times 10^3$, s ⁻¹	5.7	4.4	3.8	3.34	2.6		
k_{d}^{b} (M s) ⁻¹						30	

"First-order rate constant. "Second-order rate constant.

Propylene was polymerized using Ti (27 μ M) and MAO ([Al]/[Ti] = 2000) in toluene^{4,5} at three temperatures ($T_p = -20$, 0, 25 °C) and quenched at various times (t_p) with either normal or tritiated methanol. The PP was isolated, purified, and radioassayed.¹⁰ The kinetic results¹¹ (average of duplicate or triplicate) are summarized in Table I. An increase in T_p caused formation of more C*, but decreased both k_p and k_{tr}^A . The formation of more C*, but decreased both k_p and k_{tr}^{A} . The catalyst deactivation process is first order in [C*] above 0 °C but varies with $[C^*]^2$ at -20 °C. The earlier results for the 1/MAO catalysts are included for comparison.

The PP produced at 25 °C exhibits excellent elastic properties: strength = 6.8 MPa, elongation to break = 850%, stress at 100% elongation = 3.0 MPa, and recovery after 100% elongation = 95%. The melting temperature for the cry domains, acting as physical cross-links at ambient temperature, is 62 °C. Their properties are very similar to those of the TPE-PP obtained with 1/MAO at the same $T_{\rm p}$, the molecular structure of which has been determined.12

The stereochemistry of the polymers was determined by the analysis of 400-MHz C NMR.¹³ The [mmmm] contents were found to have decreasing values of 0.380, 0.300, and 0.229 with a decreasing T_p of 25, 0, and -20 °C, respectively. Detailed heptad analysis¹⁴ shows that the formation of stereoregular and stereoirregular sequences is consistent with the enantiomorphic and Bernoullian models of stereochemical control,¹⁵ respectively.

In conclusion, the X-ray and NMR data demonstrate that complex 2 has nonequivalent Ti-Me groups, which provides a rationale for the assumption of a two-state propagation mechanism. Monomer insertion into the Ti-Me(2) (state 2c; Me = PP chain) is stereoselective, whereas insertion into the Ti-Me(1) (state 2a) results in stereoirregular enchainment. These processes and the interconversion of the catalytic states may be written as

$$(am-PP)a \xleftarrow{k_{ps}}{C_{3}H_6} 2a \xleftarrow{k_1}{C_{3}H_6} 2c \xrightarrow{k_{pc}}{C_{3}H_6} (cry-PP)c$$
 (1)

For 0 °C < $T_p \leq 50$ °C, many monomers are inserted with either

(11) The specific ³H activity in PP was corrected for the kinetic isotope (11) The specific ³H activity in PP was corrected for the kinetic isotope effect¹⁰ and converted to concentration of metal polymer bond [MPB], the value of which at zero yield (Y) by extrapolation gave [C*]. The rate of polymerization (R_p) was calculated from a Y versus t_p plot from which we calculated $k_p = R_p/[C^*][monomer]$. The value of k_{1r}^A was obtained¹⁰ by ([MPB]₁ - [MPB]_0) k_p° [monomer]/Y. A plot of log R_p versus t_p afforded the first-order k_d , whereas a plot of $\Delta(R_p)^{-1}$ versus t_p gave the second-order k_d . (12) For the TPE-PP obtained at $T_p = 25$ °C, from the measured equilibrium modules ($G_{\infty} = 0.56$ MPa), we estimated $a \sim 50$ using $G_{\infty} = 42\rho RT/a$, where ρ is the PP density. The percent crystallinity (χ_c) and number average degree of polymerization (\overline{DP}_{-}) were determined to be 26% number average degree of polymerization (\overline{DP}_n) were determined to be 26% and 2300, respectively. These results gave $n = (\overline{DP}_n)(1 - X_c)/a \approx 34$ and c

 $X_c(\overline{DP}_n)/n \approx 18$. (13) ¹³C NMR spectra of PP were obtained by using o-dichlorobenzene solvent at 100 °C on a Varian XL-400 spectrometer operating at 100.6 MHz for carbon, 76° (14.5-ms) pulses, 0.75-s acquisition time, and TMS as internal

(14) Chien, J. C. W.; Babu, G. N.; Cheng, H. N., to be published (15) Sheldon, R. A.; Fueno, T.; Tsunetsugu, T.; Furokawa, J. J. Polym. Sci. 13 1965, 3, 23. state before conversion to the other occurs. The values of $k_{p,a}/k_1$ (= $a/[C_3H_6]$) and $k_{p,c}/k_{-1}$ (= $c/[C_3H_6]$) are large, and k_1^{-1} and k_{-1}^{-1} are much shorter than the kinetic chain lifetime. TPE-PP is thus produced possessing excellent mechanical and elastic properties. On the other hand, the PP obtained at $T_p \leq 0$ °C is without crystallinity because of two contributions. The lowering of T_p decreases the block lengths a and c as well as k_1/k_{-1} . Therefore, the nonstereoselective state is lower in energy than the stereoselective state.

Acknowledgment. G.H.L. acknowledges support from the Science and Educational Ministry of Spain.

Supplementary Material Available: Detailed information on the crystal structure determination of 2 including atomic fractional coordinates and interatomic distances and angles (5 pages); listing of observed and calculated structure factors for 2 (5 pages). Ordering information is given on any current masthead page.

Isospecific Polymerization of Propylene Catalyzed by rac-Ethylenebis(indenyl)methylzirconium "Cation"

James C. W. Chien,*,^{†,‡} Woei-Min Tsai,[‡] and Marvin D. Rausch[‡]

> Department of Polymer Science and Engineering and Department of Chemistry University of Massachusetts Amherst, Massachusetts 01003

> > Received June 21, 1991

The first homogeneous Ziegler-Natta catalyst Cp₂TiCl₂¹ (Cp = η^{5} -cyclopentadienyl) activated with alkylaluminum chlorides exhibited low polymerization activity (A) for ethylene² and none for propylene. The use of methylaluminoxane³ (MAO) raised A by several orders of magnitude. Furthermore, metallocene/ MAO systems,⁴ especially ones comprising chiral ansa-hapto ligands,⁵ can catalyze the isospecific polymerization of propylene. Recently, many "cationic" metallocene alkyls, usually with BPh₄ as the counterion, have been synthesized by reactions of alkyl derivatives of the metallocene with BPh₄ salts of R₃NH,^{6b-d,g} Ag,^{6a,7b} K,^{7b} and Cp₂Fe.^{7b,d} They were found to exhibit modest ethylene polymerization activity,⁶ but either they showed no ac-

⁽⁹⁾ The two Ti-CH₃ distances are both distinctly shorter than the Ti-CH₃ distance of 2.21 (2) Å found in $(\eta^5-C_9H_7)_2$ Ti(CH₃)₂: Atwood, J. L.; Hunter, W. E.; Hrncir, D. C.; Samuel, E.; Alt, H.; Rausch, M. D. *Inorg. Chem.* 1975, 14, 1757

 ^{(10) (}a) Chien, J. C. W.; Kuo, C. I. J. Polym. Sci., Polym. Chem. Ed.
 (1985, 23, 731. (b) Chien, J. C. W.; Bres, P. J. Polym. Sci., Polym. Chem.
 Ed. 1986, 24, 1967, 2483. (c) Chien, J. C. W.; Hu, Y. J. Polym. Sci., Polym.
 Chem. Ed. 1987, 25, 2847, 2881. (d) Chien, J. C. W.; Wang, B. P. J. Polym.
 Sci., Part A 1989, 27, 1539. (e) Chien, J. C. W.; Wang, B. P. J. Polym. Sci., Part A 1990, 28, 15

Department of Polymer Science and Engineering.

¹Department of Chemistry.

Breslow, D. S.; Newburg, N. R. J. Am. Chem. Soc. 1957, 79, 5072.
 Chien, J. C. W. J. Am. Chem. Soc. 1959, 81, 86.
 Sinn, H.; Kaminsky, W.; Vollmer, H.-J.; Woldt, R. Angew. Chem., Int.

Ed. Engl. 1980, 19, 390.

<sup>Ed. Engl. 1960, 19, 390.
(4) Ewen, J. A. J. Am. Chem. Soc. 1984, 106, 6355.
(5) (a) Kaminsky, W.; Külper, K.; Brintzinger, H. H.; Wild, F. R. W. P. Angew. Chem., Int. Ed. Engl. 1985, 24, 507. (b) Rieger, B.; Chien, J. C. W. Polym. Bull. 1989, 21, 159. (c) Rieger, G.; Mu, X.; Mallin, D. T.; Rausch, M. D.; Chien, J. C. W. Macromolecules 1990, 23, 3559. (d) Chien, J. C. W.; Sugimoto, R. J. Polym. Sci., Part A 1991, 29, 459. (e) Ewen, J. A.; Haspeslagh, L.; Atwood, J. L.; Zhang, H. J. Am. Chem. Soc. 1987, 109, 6544.</sup> (f) Ewen, J. A.; Jones, R. L.; Razavi, A.; Ferrara, J. D. J. Am. Chem. Soc. 1988, 110, 6255.

Table I. Propylene Polymerizations^a

run		catalyst	co	catalyst		polymer	ization			T _m ,	°C	[n]	M
no.	Zr	concn, µM	compd	concn, mM	°Č	time, min	yield, g	A, ^b ×10 ⁻⁶	IY,' %	t-PP ^d	i-PP ^d	dL/g	×10-4
1	4	75	3	0.075	20	30	8.80	8.5	36.9	128.8	141.4	0.32	2.4
2	4	75	3	0.075	0	30	9.45	6.7	88.4	142.4	147.2	0.66	5.9
3	4	75	3	0.075	-20	6	7.70	21	93.6	152.9	153.8	1.11	11
4	4	100	3	0.100	-55	6	6.81	(>10)	96.3	161.1	160.8	1.45	16
5	2	125	ΜΑΟ	312	20	30	2.39	1.4 1.3 ^{5d}	59.6 74.6 ⁵ °	134.8		0.31	2.4
6	2	125	MAO	312	0	30	0.21	0.09 0.15 ^{5d}	76.0 74.4 ⁵ °	141.5 143 ⁵ °	144 ^{5c}	0.66 0.74 ^s c	5.9 12 ^{h,5c}
7	2	50	MAO	312	-20	60	0.08	0.033 0.031 ^{sa}	75.0 75.3 ⁵ °	146.8 147 ⁵ °	149 ^{5c}	0.75 0.92 ^{sc}	7.0 14.2
8	2	50	MAO	312	-55	60	0.01	0.0023 ^{5d}	86.2 ^{5d}	152 ^{5d}	154 ^{5d}		

^a Toluene = 50 mL, $P(C_1H_6) = 1.68$ Torr except in runs 4 and 8, where 50 mL of C_1H_6 was metered in. ^b In (g of PP)((mol of Zr)·[C_1H_6]·h)⁻¹. ^c Weight percent of PP insoluble in refluxing *n*-heptane. ^d t-PP is total polypropylene; i-PP is isotactic polypropylene. $\log M_w = 1.25 \times (\log [\eta] + 1.25$ 4) (Chiang, R. J. Polym. Sci. 1956, 28, 235). ^fAgitation limited. ^gM_w by GPC. ^hM_w by light scattering.

tivity for propylene polymerization or they gave low yields of atactic products.^{6e,8} We report here that the title "cation" 1 is extremely active and stereoselective in propylene polymerization and that its catalytic activity and stereospecificity increase with a decrease of polymerization temperature (T_p) .

All operations were performed using Schlenk tube techniques under an argon atmosphere. rac-Et(Ind)₂ZrCl₂⁹ (2), LiB(C₆F₅)₄¹⁰ and MAO¹¹ were prepared according to published procedures. Triphenylcarbenium tetrakis(pentafluorophenyl)borate (3) was prepared by mixing $LiB(C_6F_5)_4$ (3.00 g, 4.25 mmol) and triphenylmethyl chloride (1.42 g, 5.09 mmol) in 200 mL of dry n-hexane and refluxing overnight. The yellow solid was dissolved in CH₂Cl₂ and the LiCl removed by filtration. Recrystallization of the product from CH_2Cl_2 /hexane afforded orange crystals of 3 (2.51 g, 2.72 mmol, 64% yield): ¹H NMR (C_6D_6) δ 8.27 (t, J = 7.5 Hz, 3 H), 7.88 (t, J = 7.9 Hz, 6 H), 7.68 (t, J = 8.5 Hz, 6 H). Anal. Found (calcd): C, 55.80 (55.99); H, 1.69 (1.64). rac-Et(Ind)₂Zr(CH₃)₂ (4) was obtained by the reaction of 2 (0.20 g, 0.48 mmol) in 100 mL of dry toluene with methyllithium (0.68 mL of a 1.4 M solution) between 0 and 25 °C. Filtration, concentration, and cooling at -20 °C yielded 0.064 g of 4 (25%): ¹H NMR $(C_6D_6) \delta -0.96 (s, 6 H, CH_3), 2.60-2.85 (m, 4 H, C_2H_4),$ 5.65 [d, J = 3.3 Hz, 2 H, CH(C₅)], 6.42 [d, J = 3.3 Hz, 2 H, CH(C₅)], 6.85-7.40 (m, 8 H, Ar).

In analogy to the other metallocene "cation" producing reactions, 6,7 1 was formed by the reaction of 4 with 3 (eq 1). The proton NMR spectrum of 5 was readily observed.

$$Et(Ind)_{2}Zr(CH_{3})_{2} + Ph_{3}C^{+}B(C_{6}F_{5})_{4}^{-} \rightarrow 4 [Et(Ind)_{2}Zr(CH_{3})]^{+}B(C_{6}F_{5})_{4}^{-} + Ph_{3}CCH_{3} (1) 1 5$$

Soc. 1987, 109, 4111. (c) Jordan, R. F.; Bradley, P. K.; Baenziger, N. C.; La Pointe, R. E. J. Am. Chem. Soc. 1990, 112, 1289. (d) Reference 6f. (8) Yang, et al. (Yang, X.; Stern, C. L.; Marks, T. J. J. Am. Chem. Soc. 1991, 113, 3623) obtained $[L_2ZrCH_3]^+CH_3B(C_6F_5)_3^-$ ($L = \eta^5 \cdot C_3H_5, \eta^5 - 1,2 \cdot (CH_3)_2, GH_3, \eta^5 \cdot C_5(CH_3)_5$) by the reaction of $L_2Zr(CH_3)_2$ with $B(C_6F_5)_3^-$. The cations exhibit very high ethylene polymerization activities, but the nonstereorigid system can polymerize propylene only to atactic polypropylene

with low activity. The product is of very low molecular weight ($M_n = 3000$) and broad distribution ($M_w/M_n = 5$). (9) (a) Wild, F. R. W. P.; Zxolnal, L.; Huttner, G.; Brintzinger, H. H. J. Organomet. Chem. 1980, 232, 233. (b) Collins, S.; Kuntz, B. A.; Taylor, N. J.; Ward, D. G. J. Organomet. Chem. 1988, 342, 21.

(10) (a) Massey, A. G.; Park, A. J. J. Organomet. Chem. 1964, 2, 245. (b) Massey, A. G.; Park, A. J. Organometallic Synthesis; King, B. B., Eisch, J. J., Eds.; Elsevier: New York, 1986; Vol. 3, p 461.

(11) Chien, J. C. W.; Wang, B. P. J. Polym. Sci., Part A 1988, 26, 3089.

Polymerizations of propylene, at T_p ranging from -55° to 20 °C, were carried out in a 250-mL crown-capped glass pressure reactor containing 50 mL of toluene and were equilibrated with propylene at 1.7 Torr. Equimolar amounts of 4 and 3 were introduced in that order to form 1 in situ. Polymerization began immediately, reaching a maximum rate (R_p) within 2-3 min. There was little or no decay of R_p as monitored by pressure drop. The polymerization was quenched with methanol, and the polymer was worked up as detailed elsewhere. 5c,d,11 The values of A were calculated using the measured solubility of propylene.^{5c} There are two measures for stereospecificity in propylene polymerization: the percent yield of refluxing *n*-heptane insoluble i-PP (IY) and the isotacticity of the PP as judged by T_m (melting temperature), crystallinity, homosteric sequence distribution, etc.

The polymerization activity of 1 is very high; it is 6 times greater than the activity of the 2/MAO system at 20 °C (compare runs 1 and 5, Table I). IY, T_m , and M_w were all similarly low for PP produced by both catalysts at this T_p . Unexpectedly, 1 has an A which is greater at lower temperatures; at $T_p \leq -20$ °C the polymerizations were agitation limited after only a few minutes.¹² Furthermore, the stereospecificity, as judged by IY, T_m , and M_w , also became greater at low T_p . At -55 °C, 1 produced 96.3% i-PP with $T_{\rm m} \sim 160$ °C, indicating very high stereoregularity. The latter was supported by ¹³C NMR steric sequence distributions (to be published).

MAO was found to be detrimental to propylene polymerizations catalyzed by 1. In separate runs using 3.75 μ mol of 4 + 3, the addition of 0.5 mmol of MAO at t_p of 1 min, 6 min, and 15 min produced 1.45, 4.53, and 7.02 g of PP, respectively, with corresponding A values of 1.03×10^6 , 3.22×10^6 and 5×10^6 (g of PP)((mol of Zr)·[monomer]·h)⁻¹. The yields and A are 9.45 g and 6.7×10^6 in the absence of MAO. The addition of a mixture of 4, 3, and MAO to propylene in toluene produced only a small amount of polymer. ¹H, ¹³C, and ¹⁹F NMR showed that 4 reacts with trimethylaluminum, which is an unavoidable contaminant in MAO (to be published).

The A of 2/MAO catalyst decreased with temperature with an Arrhenius dependence of 10 kcal/mol^{5d} (runs 5-8 of Table I). This can be explained by the energies of activation required for both the extraction of chloride ion from 2 and methylation of the resulting cation by MAO.

Our work is complementary to an alternate synthesis of "cation-like" zirconocene methyl species described by Marks and co-workers.8 Our stereorigid ansa-metallocene "cation" exhibits high activity and stereospecificity for propylene polymerization, whereas their nonstereorigid system has low activity and is nonspecific.

Registry No. 2, 100080-82-8; 3, 136040-19-2; 4, 49596-04-5; LiB-(C₆H₅)₄, 2797-28-6; CH₂=CHCH₃, 9003-07-0; CH₂=CHCH₃ (isotactic homopolymer), 25085-53-4; LiMe, 917-54-4; (Ph)₃CCl, 76-83-5.

^{(6) (}a) Jordan, R. F.; Bajgur, C. S.; Willett, R.; Scott, B. J. Am. Chem Soc. 1986, 108, 7410. (b) Hedden, D.; Marks, T. J. J. Am. Chem. Soc. 1988, Soc. 1986, 108, 7410. (b) Hedden, D.; Marks, T. J. Am. Chem. Soc. 1988, 110, 1647. (c) Taube, R.; Krukowka, L. J. Organomet. Chem. 1988, 347, C9. (d) Hlatky, G. G.; Turner, H. W.; Eckman, R. R. J. Am. Chem. Soc. 1989, 111, 2728. (e) Bochmann, M.; Jaggar, A. J.; Nicholls, J. C. Angew. Chem., Int. Ed. Engl. 1990, 29, 780. (f) Jordan, R. F.; La Pointe, R. E.; Baenziger, N. C.; Hinch, G. D. Organometallics 1990, 9, 1539. (g) Jordan, R. F.; Dasher, W. E.; Echols, S. F. J. Am. Chem. Soc. 1986, 108, 1718. (7) X-ray structures have been determined: (a) Lin, Z.; Le Marechal, J.-F.; Sabat, M.; Marks, T. J. J. Am. Chem. Soc. 1987, 109, 4127. (b) Jordan, R. F.; La Pointe, R. E.; Bajgur, C. S.; Echols, S. F.; Willett, R. J. Am. Chem. Soc. 506, 1787, 109, 4111. (c) Jordan, R. F.; Bandley, P. K.; Baenziger, N. C.;

⁽¹²⁾ This behavior is unprecedented in Ziegler-Natta catalysis. In previous catalysts, either heterogeneous or homogeneous, A decreases sharply with a decrease of T_{p} .